
IBM Research

© 2010 IBM Corporation

Grady Booch
Free Radical

SOA as an Architectural Pattern
Best Practices in Software Architecture



IBM Research

© 2010 IBM Corporation

What’s An Enterprise?

 A namable entity that delivers some product or service with 

some measureable value

– An enterprise has boundaries (but is rarely completely isolated)

– An enterprise does something (for some set of stakeholders)

– An enterprise’s activities can be measured (by the market or by less 

tangible measures)



IBM Research

© 2010 IBM Corporation

What Is Not An Enterprise?

 An enterprise is not

– A product or service

– A project

– A family of interconnected projects

– An architecture of these products and services

– The human organization

 Although these things are all elements of an enterprise



IBM Research

© 2010 IBM Corporation

The Living Enterprise

 All vibrant enterprises are quite dynamic

 Software-intensive systems are a primary mechanism used by 

enterprises to carry out their mission

– May be the very soul of the enterprise (eBay, Amazon, BoF)

– Might be the product or service itself (Intuit, Cisco)

– Might be the touch point of its interaction with the world (NRO)

 All well-structured systems are full of patterns



IBM Research

© 2010 IBM Corporation

EA Is Not TA

 Although the two share the noun "architecture" they are different 

things.

– EA attends to the architecture of a business that uses technology

– TA attends to the architecture of the software-intensive systems that 

support the business.

 Each domain - that of the business and that of the system - have 

fundamentally different stakeholders with different perspectives 

and different viewpoints.



IBM Research

© 2010 IBM Corporation

What is a Pattern?

 Patterns describe a solution to a recurring problem.

– Each pattern is a three-part rule, which expresses a relation 

between a certain context, a problem, and a solution.

(Christopher Alexander)

– A pattern may be discovered in the collaboration of people 

or within workflows and procedures, and so on

– Typically someone identifies the recurrence of the problem 

and the solution and formally documents the participants, 

their interactions, and the context

– Some patterns are best captured as guidance and persist in 

the form of documentation such as RUP or GS Method. 

Other patterns may be implemented with automation

– Patterns may live at different levels of systems; such as 

from business processes to the deployed bits



IBM Research

© 2010 IBM Corporation

What is a Framework?

 Partially implemented application built from patterns.

 May use a pattern solution to implement a framework



IBM Research

© 2010 IBM Corporation

Pattern Value

 Organizations seek improved quality and productivity, 

consistency across development efforts, communicating and 

establishing best practices, improved governance and 

architectural control

 Using patterns in our daily activities reduces the mundane, 

improves productivity and quality, and leaves more cycles for 

the creative juices to be applied to competitive differentiators

 Today's patterns often become tomorrow’s infrastructure



IBM Research

© 2010 IBM Corporation

Implementing Patterns

 Patterns may be realized as process guidance or may be codified 

within tooling
The solution described by a pattern may 

be implemented in a component, or 

across several components, or in a 

service. There are various codifications 

of patterns.

recognizes & 

documents

+

creates
(later)

customizes 

a solution

customizes 

an asset

The codified pattern may be 

further customized by less 

skilled users.

•Configurable Component: parameterized software 

component implementing one or more patterns; may be 

published as a service

•Transformation: implements a pattern through actions 

which modify model elements and other artifacts

•Template: contains sections marked for substitution 

with parameters supplied by the user

•Parameterized Model: a special kind of template, this 

describes a pattern to which model elements may be 

mapped to “apply” the pattern



IBM Research

© 2010 IBM Corporation

Narrowing Our Scope Of Interest

 We largely care about the creation, development, deployment, 

evolution, operation, and support of these software-intensive 

systems

 The operative phrase here is “software-intensive system”

– It’s about software and hardware and the social elements

– The most important artifact is the raw, running naked code that runs 

on hardware and interacts with humans

– All other artifacts are secondary, but nonetheless they are still 

critical, for they help the enterprise deliver the right system at the 

right time to the right stakeholders with the right balance of cost and 

value.



IBM Research

© 2010 IBM Corporation

There Are Some Known Knowns

 All architecture is design; not all design is architecture. A 

system’s architecture is defined by its significant design 

decisions (where “significant” is measured by the cost of 

change)

 Most architectures are accidental; some are intentional

 Every software-intensive system has an architecture, forged 

from the hundreds of thousands of small decisions made every 

day

 The code is the truth, but not the whole truth: most architectural 

information is preserved in tribal memory



IBM Research

© 2010 IBM Corporation
12

Architecture metamodel

4/28/2010 Ⓒ 2008 Grady Booch 



IBM Research

© 2010 IBM Corporation
13

Representing software architecture

Kruchten, “The 4+1 Model View”

Logical View

End-user
Functionality

Implementation View

Programmers

Configuration management

Process View

Performance
Scalability
Throughput

System integrators

Deployment View

System topology
Communication

Provisioning

System engineering

Conceptual Physical

Use Case View

4/28/2010 Ⓒ 2008 Grady Booch 



IBM Research

© 2010 IBM Corporation

Misconceptions About Architecture

 Architecture is just paper

 Architecture and design are the same things

 Architecture and infrastructure are the same things

 <my favorite technology> is the architecture

 A good architecture is the work of a single architect

 Architecture is simply structure

 Architecture can be represented in a single blueprint

 System architecture precedes software architecture

 Architecture cannot be measured or validated

 Architecture is a science

 Architecture is an art

Philippe Kruchten



IBM Research

© 2010 IBM Corporation

Architectural Patterns

 Event-driven

 Blackboard

 Pipe and filter

 Semantic core

 Message passing

 …



IBM Research

© 2010 IBM Corporation

SOA as an Evolutionary Development

 CICS et al are essentially message-passing technologies

 From the 90s to the presence, considerable investment has been 

made in web infrastructures

 One had to pass messages across firewalls, using web protocols

– RM-ODP (1996-1998)

– COM -> SOAP (1999)

– WSDL (2007) 



IBM Research

© 2010 IBM Corporation

SOA as an Architectural Pattern

 Message-passing appears to be a fundamental architectural style

– SOA is in effect a specific manifestation

 Services might be a big S or a little s

– Web services (big S)

– Other kinds of services (RPC, CICS, etc)



IBM Research

© 2010 IBM Corporation

SOA as a Generative Pattern

 If you consider SOA to be a message-passing style, then several 

decisions follow

– Granularity of services

– Separation of concern among services

– Semantics of the messages themselves

– Processes to continuously refactor these services and messages



IBM Research

© 2010 IBM Corporation

Fundamentals

 Development takes place at two levels: architecture and 

implementation.

– Both are ongoing, and they interact with each other strongly. New 

implementations suggest architectural changes. Architectural 

changes usually require radical changes to the implementation.

Coplien, Organizational Patterns of Agile Development, p. 332



IBM Research

© 2010 IBM Corporation

What Pain Do You Feel?

 How do we attend to new requirements without being saddled by our 

legacy (but at the same time not compromising that legacy?)

 How do we integrate new technology into our existing code base?

 How do we integrate our existing systems to extract greater value from 

the whole?

 How do we increase our agility in response to the market while 

simultaneously improving efficiency and quality yet also reducing 

costs?

 How do we attend to assets introduced through acquisition?

 How do use software to improve market efficiency through the creation 

of dominant product lines?

 How do we attend to a continuously refreshed stakeholder community, 

a globally and temporally distributed development team, and inevitable 

leakage/loss of institutional memory?

 While doing all this, how do we continue to innovate?



IBM Research

© 2010 IBM Corporation

An Observation

 While these points of pain are legion, a common thread that 

weaves though them is that of architecture

– Every software-intensive system has one

– Most are accidental, a few are intentional

– A considerable amount of architectural knowledge lies in tribal 

memory

 The presence of a reasonably well understood, syndicated, and 

governed architecture has a positive impact upon each of these 

points of pain



IBM Research

© 2010 IBM Corporation

Focus over time

Discovery Invention

Focus

Implementation

Bran Selic



IBM Research

© 2010 IBM Corporation

The Enterprise Architecture Lifecycle

 In my experience

– All hyperproductive organizations tend to have a lifecycle that 

involves the growth of a system’s architecture through the 

incremental and iterative release of testable executables.

 Not one lifecycle, but many

– Different stages of execution, maturation, and quality

– Harmony, resonance, and cacaphony



IBM Research

© 2010 IBM Corporation

Best Practices For Software-Intensive Systems

 Architecture-as-artifact is a manifestation of technical 

intellectual property and thus serves as an artifact of control 

involving

– Active yet flexible budgeting of resources

– Checks and balances for the co-evolution of architecture and 

implementation

– Accountability for technical decisions

– Hedges for the future

– Diversification for the future

– Appropriate measurements and incentives

– Cost controls

– Economics of scale via patterns

– Actively attacking risk



IBM Research

© 2010 IBM Corporation

Things You Can Do With Old Software

 Give it away

 Ignore it

 Put it on life support

 Rewrite it

 Harvest from it

 Wrap it up

 Transform it

 Preserve it



IBM Research

© 2010 IBM Corporation

Things You Can Do With An Architecture

 Reason about its transformation

– Evolution, rapid reaction, modernization, merging, acquisition, 

divestiture

 Asset identification and repurposing

– Product line

– Strategic thrust



IBM Research

© 2010 IBM Corporation

Fundamentals Never Go Out Of Style

 Crisp abstractions

 Clear separation of concerns

 Balanced distribution of responsibilities

 Simplicity

 Grow a system through the iterative and incremental release 

of an executable architecture


